The 16th AOGEO Symposium, 05 Sep 2024, hybrid

TG3: AO-GHG (Asia-Oceania Greenhouse Gases)

Toward policy-relevant global carbon cycle observation and analysis

Kazuhito ICHII Yi Liu (Chiba University, Japan) (Chinese Academy of Science, China)

Paris Agreement (UNFCCC) in 2015 Article 4:

... to undertake rapid reductions thereafter (peak emissions) in accordance with best available science, so as to achieve a **balance between** *anthropogenic* **emissions by sources** and **removals by sinks** of greenhouse gases in the second half of this century...

Global Stocktake (every 5 years: 2023, 2028...)

track regions towards zero net emissions, anthropogenic and natural fluxes (Paris Agreement)

TG-3 AO-G	HG Task Group Me	eeting Agenda		
		Date: Sep 4, 10:00-13:00		
		Room: Conference Room	#2	
		https://us02web.zoom.us/	<u>j/85361896</u>	886?pwd=XaSimXvb7UJH2GltHjPuEyJE3yeDRZ.1
		meeting ID: 853 6189 688	6 passco	de: aogeo16
Time	Name	Affiliation	Country	Title
10:00-10:05	Kazuhito Ichii	Chiba University	Japan	Setup Goals, Introduction
10:05-10:20	Osamu Ochiai	JAXA	Japan	CEOS priority initiative for Climate Policy Impact and GHG Observation
10:20-10:35	Yang Dongxu	Chinese Academy of Science	China	TanSat and TanSat-2 mission achievements
10:35-10:50	Hibiki Noda	NIES	Japan	Overview of GHGs Observation Mission with GOSAT Series
10:50-11:05	Shuai Shao	Chiba University	Japan	Development of Global Primary Production and Evapotranspiration Products derived from Enhanced BESS Model and GCOM-C SGLI Datasets
		Photo and Break		
11:15-11:30	Liu Yi	Chinese Academy of Science	China	The Achievement and Challenge of Top-down method to calculate Carbon emission
11:30-11:45	Naveen Chandra	JAMSTEC	Japan	Verification of sub-continental scale fluxes with natural and anthropogenic sector separation
11:45-12:00	Jiang Fei	Chinese Academy of Science	China	Satellite data application in emission estimation
12:00-12:15	Deepshikha	IIT-Delhi	India	Refining Methane Emission Estimates for USA, China, and India Using GOSAT XCH4 Data and Atmospheric Modeling $% \mathcal{A}_{\mathrm{S}}$
12:15-12:30	Dan Henri	Chiba University	Japan	The effect of different MODIS versions on a data-driven estimation of CO2 Fluxes in Asia
12:30-13:00		Discussion Statement Preparation		
				※ Each presentation has 12 min talk + 3min QA

Achievement:

History/Future of GHG Satellites (AO region: GOSAT (Japan), Tansat (China), GF-5, FY-3 (China)

Meas.	Org.	Sat	2002	2004	2006	2008	2010	2012	2014	2016	2018	2020	2022	2024	2026
		En visat		En visat-	Sciamach	y		[0	O₂ etc.]						
		Aqua 🕹		Aq	ua-AIRS								[CO₂ , C	H4 etc.]	
		Aura			Au	ra-TES							[CO, C	0 ₂, CH ₄e	tc.]
		GO SAT		[CO ₂ , (CH₄ etc.]		GOS	AT-1				-	GOSAT-	-2	
Pass-		000		00	:0-1			[CO 2]		0C0-2			0C0-3		
ive	*	an Sat							[CO2]	TanSat				
	*2	GF-5						[CO2	₂,CH₄eto		GF-5		Hyperspe	ectral sate	ellite
	*2	FY-3									[CO 2 .	CH₄, CC	Detc.]		FY-3G
		sentinel.	5 p						[CO2	CH4]		Se	entinel-5p		
		GeoCarl	b									[CO₂]	Geo	Carb	

ecifications of GOSAT, GOSAT-2, and GOSAT-GW						
GOSAT (2009 -)	GOSAT	GOSAT-2	AT-GW(FY2024-) Mode GOSAT-GW(FY2024-) Focus Mode			
Launch / lifetime	2009 / 5 years	2018 / 5 years	EY2024 / 7 years			
Satellite mass / power	1.75 t/ 3770 W	1.8 t / 5000 W	2.9 t / 5200 W			
Orbit	666 km, 3 days, 13:00, descending	613 km, 6 days, 13:00, descending	666 km, 3 days, 13:30, ascending			
Spectrometer	FTS	FTS-2	TANSO-3 (Grating)			
Major targets	CO2, CH4	CO2, CH4, CO, SIF	CO ₂ , CH ₄ , NO ₂ , SIF			
Spectral bands	0.7 / 1.6 / 2 µm + TIR	0.7 / 1.6 / 2 µm + TIR	0.45 / 0.7 / 1.6 µm			
Spectral Resolution (Sampling interval)	0.2 cm ⁻¹ , (≈ 0.01 nm @ 0.7 μm, ≈ 0.05 n	ım @ 1.6 μm)	< 0.5 nm @ 0.45 μm, <0.05 nm @ 0.7 μm, <0.2 nm @ 1.6 μm			
Swath	Discrete, 1 – 9 points	Discrete, 5 points	Selectable, 911 km (Wide Mode) or 90 km (Focus Mode)			
Footprint size, nadir	10.5 km	9.7 km	Selectable, 10 km (Wide Mode) or 1 – 3 km (Focus Mode)			
Pointing	± 20 / ± 35 deg (AT/CT)	±40 /±35 deg (AT/CT)	± 40 /± 34.4 deg (AT/CT) for Focus Mode			
ronning			AMODO			

[Slide by Prof. Yi Liu]

Challenges

✓ Accuracy improvement with more observation data Is expected.

✓ More collaboration (within Asia-Oceania) is expected.

Achievement: Bottom-up Carbon Products using various sensors

<figure>

Carbon Stock (Biomass) Products

Substantial investment (\$4.5Bn) in biomass-related mission launches 2018-2025: ICESat-2, GEDI, MOLI, SAOCOM-1A/B, ALOS-4, NISAR, BIOMASS

[Ochial]

Carbon Flux Products

[Shao]

400 800 1200 1600 2000 2400 2800 3200 3600 400

(4) GCOM-C SGLI

Table.1 Details of different medium-resolution satellites

Satellite	Launch Date	Expected End Date	Temporal Resolution	Spatial Resolution	Coverage Band	Agency	
GCOM-C SGLI	2017	TBD	1 day	250 m to 1 km	Visible to Infrared	JAXA	
MODIS (Terra)	1999	In coming years	1-2 days	250 m to 1 km	Visible to Infrared	NASA	
VIIRS (NPP)	2011	TBD	1 day	375 m to 750 m	Visible to Infrared	NASA/NO AA	

Challenges

- ✓ High Spatial Resolution
- ✓ Improvement of Accuracy
- ✓ International collaboration

Achievement:;

Assessment of anthropogenic CO2 emissions, Separation of natural and anthropogenic esimates

REFINI	NG METHANE EMISSION ESTIN OSAT XCH4 DATA AND ATMOS MODELING		
	for USA, China, and India		
Indian Institute of Technology, Delhi	Presenter : Deepshikha I6th AOGEO Symposium		
	04 September 2024	Mentors Prof. Sagnik Dey Dr. Prabir K. Patra	[Chandra]
[Deepshikh	a]	Verification	of sub-continental scale CO ₂ fluxes with natural and anthropogenic sector separation
Challenges		Naveen Cl	nandra and Prabir. K. Patra
 Revise Inveotory (Anthropogenic emission) 		Research (IAC * <u>naveennegi@</u>	iamstec.go.jp
✓ (better o	obs converge, modeling)	JAMSTEC	Asia-Oceania Greenhouse Gases Symposium TG-3 AO-GHG (Asia-Oceania Greenhouse Gases) 04 September 2024

Achievement: Carbon Assessment – yearly (speedy) update

3.3 2023 Global extreme Heatwave

Challenge: toward low latency (near-real time & take action) (in-situ obs data)

[Jiang]

Challenge; Potential Collaboration with Global Frameworks for GHG

Home / All Activities / Global Greenhouse Gas Watch (G3W)

Global Greenhouse Gas Watch (G3W)

(Committee on Earth Observation Satellites)

AOGEO

TG-3: AO-GHG

✓ where to put energy in AOGEO regions, identify key regions. Gap areas

Ongoing Issues & Way forward

- ✓ Accuracy and data availability of measurements of GHG
- ✓ Low-latency (e.g. other in-situ takes long term)
- ✓ High spatial and temporal resolution
- ✓ Point sources, Hotspot of emission
- ✓ Separation of anthropogenic and natural carbon cycle processes
- ✓ integration system refinement
- ✓ Coordination among agencies
- ✓ Where to put energy in AOGEO regions, identify key regions. Gap areas.
- ✓ Collaboration among international frameworks.